
Sensor Data Distribution With Robustness and

Reliability – Toward Distributed Components

Model

Charles Lee
SAIC

c/o NASA Ames Research Center
Moffett Field, CA 94035

650-604-6054
charles.lee@saic.com

Richard L. Alena

NASA Ames Research Center

Moffett Field, CA. 94035
650-604-0262

Richard.L.Alena@nasa.gov

Abstract—In planetary surface

exploration mission, sensor data

distribution is required in many aspects,

for example, in navigation, scheduling,

planning, monitoring, diagnostics, and

automation of the field tasks. The

challenge is to distribute such data in the

robust and reliable way so that we can

minimize the errors caused by

miscalculations, and misjudgments that

based on the error data input in the

mission. The ad-hoc wireless network on

planetary surface is not constantly

connected because of the nature of the

rough terrain and lack of permanent

establishments on the surface. There are

some disconnected moments that the

computation nodes will re-associate with

different repeaters or access points until

connections are reestablished. Such a

nature requires our sensor data

distribution software robust and reliable

with ability to tolerant disconnected

moments. This paper presents a

distributed components model as a

framework to accomplish such tasks.

The software is written in Java and

utilized the available Java Message

Services schema and the JBoss

implementation. The results of field

experimentations show that the model is

very effective in completing the tasks.

1. INTRODUCTION

Sensor data is essential to many aspects

of planetary surface exploration mission.

For planning, the sensor data are needed

as inputs of the location, environment,

and distances. For scheduling, senor data

are needed for calculation of the

duration, time, position, and routs. For

operation, sensor data needed to

calculate the location, progress, the

health status, etc. The data acquired from

sensors are real time stream and are

needed by real time. Parallel processing

of those data to the end need introduces

the reliability issue. The major causes of

the less reliable are large communication

overhead, and difficult of multiple

threading programming. To distribute

sensor data in the reliable way, we

experimented different schema,

framework to find out the robust and

reliable system. We finally selected the

Message oriented middleware as

distributed infrostructure [3]. Message-

oriented middleware is a category of

inter-application communication

software that presents an asynchronous

message-passing model as opposed to a

request/response model. As far as the

client’s concern, it is close to real-time

processing [4]. Most MOM systems are

based around a message queuing system.

The primary advantage of a message-

oriented communications protocol is the

ability to store, route, and resend a

message that is to be delivered.

Most MOM systems provide a persistent

storage to hold messages until they are

successfully transferred. This means that

it is not necessary for both the sender

and receiver to be connected at the same

time. This is useful for dealing with

faulty connections, unreliable networks,

and timed connections. It also means

that if a receiver fails to receive a

message for any reason, the sender can

continue unaffected, since the messages

will be held in the message store and

will be transmitted when the receiver

reconnects.

MOM systems present two messaging

models:

• Point to point: This model [2] is

based on message stores known as

queues. A sender sends a message to

a specified queue. A receiver

receives messages from the queue. A

queue can have multiple senders and

receivers, but an individual message

can only be delivered to one

receiver. If multiple receivers are

listening for messages on a queue,

the underlying MOM system usually

determines which receiver will

receive the next message. If no

receivers are listening on the queue,

messages remain in the queue until a

receiver attaches to the queue.

• Publish Subscribe This model [1] is

based on message stores known as

topics. Publishers send messages to a

topic. Subscribers retrieve messages

from a topic. Unlike the point-to-

point model, many subscribers can

receive the same message.

A message-driven bean must declare

deployment information about itself in a

deployment-descriptor file named ejb-

jar-xml. The EJB container handles the

duties of subscribing the bean to the

topic or connecting it to the queue based

on information placed in the deployment

descriptor.

• The ejb-jar.xml file contains:

• The fully-qualified class name of

the message-driven bean

• A name for the message-driven

bean

• The destination type of the bean

• Transaction attributes

• Security information

The following is an example of a typical

ejb-jar.xml file:

<ejb-jar>

 <enterprise-beans>

 <message-driven>

 <ejb-name>MyMDB</ejb-name>

 <ejb-

class>com.jeffhanson.ejb.MyMDB</ejb-

class>

 <transaction-

type>Container</transaction-type>

 <message-driven-destination>

 <destination-

type>javax.jms.Topic</destination-

type>

 </message-driven-destination>

 <security-identity>

 <run-as-specified-identity>

 <role-name>system</role-

name>

 </run-as-specified-identity>

 </security-identity>

 </message-driven>

 </enterprise-beans>

</ejb-jar>

2. Overview of JMS

A message-driven bean (MDB) is an

EJB that functions as a JMS message

consumer. Unlike session beans or entity

beans, clients cannot access message-

driven beans directly. Also, unlike

session beans and entity beans, a

message-driven bean does not have

remote or home interfaces. The only

access a client has to a message-driven

bean is through a JMS destination (topic

or queue) of which the message-driven

bean is listening.

A MDB must implement two interfaces:

[1] javax.jms.MessageListener--
This interface defines the

onMessage callback method.

When a message is put on the

queue/topic, the onMessage

method of the message-driven

bean is called by the EJB

container and passed the actual

message.

[2] javax.ejb.MessageDrivenBean--

This is the EJB interface that

contains the EJB lifecycle

methods:

ejbCreate()--called by the EJB

container when the message-

driven bean is created

ejbRemove()--called by the EJB

container when the message-

driven bean is destroyed or

removed from the EJB pool

setMessageDrivenContext(Mess

ageDrivenContext context)--
called prior to ejbCreate and

passed the message-driven

context by the EJB container

The context has runtime information

such as transaction data.

The diagram in Figure 1 illustrates the

interactions between a JMS message, a

client, a topic, an application server, an

EJB container, and message-driven bean

instances.

As mentioned before, message-driven

beans do not have remote or local

interfaces as with session beans and

entity beans. Message-driven beans are

not located by client classes, and client

classes do not directly invoke methods

on them. All access to a message-driven

bean is through a JMS topic or queue

which directs messages at the message-

driven bean through the EJB container.

The EJB container ultimately passes the

JMS message to the message-driven

bean through the bean’s onMessage

method. All message-driven beans must

implement the

javax.ejb.MessageDrivenBean and

javax.jms.MessageListener interfaces, as

the example illustrates.

Message-Oriented-Middleware provides

a common reliable way for programs to

create, send, receive and read messages

in any distributed Enterprise System.

MOM ensures fast, reliable

asynchronous electronic communication;

guaranteed message delivery, receipt

notification and transaction control.

The Java Message Service (JMS)

provides a standard Java-based interface

to the message services of a MOM of

some other provider.

Messaging systems are classified into

different models that determine which

client receives a message. The most

common messaging models are:

Publish-Subscribe Messaging

Point-To-Point Messaging

Request-Reply Messaging

Not all MOM providers support all these

models.

Publish-Subscribe

Messaging

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage

Server

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage

Server

Figure 1 Publish subscriber Messaging

When multiple applications need to

receive the same messages, Publish-

Subscribe Messaging is used. The

central concept in a Publish-Subscribe

messaging system is the Topic. Multiple

Publishers may send messages to a

Topic, and all Subscribers to that Topic

receive all the messages sent to that

Topic. This model, as shown in Figure 1,

is extremely useful when a group of

applications want to notify each other of

a particular occurrence.

In Publish-Subscribe Messaging, there

may be multiple Senders and multiple

Receivers.

Point-To-Point Messaging

When one process needs to send a

message to another process, Point-To-

Point Messaging can be used. However,

this may or may not be a one-way

relationship. The client to a Messaging

system may only send messages, only

receive messages, or send and receive

messages. At the same time, another

client can also send and/or receive

messages. In the simplest case, one

client is the Sender of the message and

the other client is the Receiver of the

message.

There are two basic types of Point-to-

Point Messaging systems. The first one

involves a client that directly sends a

message to another client. The second

and more common implementation is

based on the concept of a Message

Queue. Such a system is shown in Figure

2.

Sender

Sender

Sender

Message

Queue
Receiver

Message

Server

Sender

Sender

Sender

Message

Queue
Receiver

Message

Server

Figure 2. Point to Point Messaging

The point to note in Point-to-Point

messaging is that, even though there

may be multiple Senders of messages,

there is only a single Receiver for the

messages.

JMS Parent Publish

Subscribe

Domain

Point To Point

Domain

Destination Topic Queue

Connection

Factory

TopicConne

ction

Factory

QueueConnection

Factory

Connection TopicConne QueueConnection

ction

Session TopicSessi

on
QueueSession

MessageProd

ucer

TopicPubli

sher

QueueSender

MessageCons

umer

TopicSubsc

riber

QueueReceiver,

QueueBrowser

3. ARCHITECTURE DESIGN

We selected Publish Subscribe

architecture for our data distribution. In

our project requirements, the data is

distributed to multiple remote clients and

the publisher may publish the data to a

remote machine. The requirements are

satisfied with this architecture.

 Astronaut Backpack

Windows

JBoss /JMS
Mex

Switchboard
Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex GPS
API

dGPS

Serial dGPS - MCA

Corba /IIOP MEX GPS/ dGPS to ERA

Mex dGPS /GPS

Astronaut Backpack

Windows

JBoss /JMS
Mex

Switchboard
Publisher

Brahms Virtual
Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex GPS
API

dGPS

Serial dGPS - MCA

Corba /IIOP MEX GPS/ dGPS to ERA

Mex dGPS /GPS

Figure

As Figure 3 shows, the Astronaut carry a

backpack and the software is running on

the computer in the pack. The GPS unit

is connected to the computer and the

data is distributed to the JMS server by

using the GPS server model. The client

will access the data by subscribe to the

topic using the API provided by the GPS

server developer.

The Bio information of the Astronaut is

also distributed by the architecture as

shown in the Figure 4.

Astronaut Backpack

Windows

JBoss/JMS
Mex

Switchboard

Publisher

Brahms Virtual

Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex Nonin
API

Nonin

Serial
Nonin Bio Sensor

MEX Nonin Publisher

Mex Nonin

Astronaut Backpack

Windows

JBoss/JMS
Mex

Switchboard

Publisher

Brahms Virtual

Machine

Astro
MEX

Com Agent

Astro
Personal

Agent

Mex Nonin
API

Nonin

Serial
Nonin Bio Sensor

MEX Nonin Publisher

Mex Nonin

Figure 4. Biosensor architecture

We are collaborating with a Robotic

Rover team (ERA team) for the

exploration field test and need to

distribute sensor data to their server so

the robot will be able to do some action

like, following astronaut, take picture at

certain point that is related to astronaut

or just take a picture of an astronaut.

Since our other team (ERA team) is

using CORBA framework [6] for their

distributed object model, we have to

distribute the data across CORBA object

by connecting our CORBA client with

sensor and push the data to the Rover

object running on CORBA ORB.

The architecture of the data distribution

to ERA server is shown in Figure 5. The

ERA has a server called Executor to

accept the data and store in the local

memory for the period of time. We need

to push the data in the rate that keep the

data refresh before the memory time out.

ERA
Linux

Differential

ERA

Exec

Brahms Virtual

Machine

Era

Com Agent

Era
Personal

Agent

Serial

dGPS

ERA dGPS

ServerFrom astronaut

ERA
Linux

Differential

ERA

Exec

Brahms Virtual

Machine

Era

Com Agent

Era
Personal

Agent

Serial

dGPS

ERA dGPS

ServerFrom astronaut

Figure 5. The ERA CORBA server.

The subscribed client will receive the

stream of data by intercept the message

listener. One of such client is the Rover

monitor. It can show the movement of

rover on the map in the real time. The

figure 6 shows the monitor screen when

we did a test in Moffett Field, CA.

The circle with cross is the moving

cursor to show the rover location by

interpreting the coordinates received

from subscripting to GPS topic.

4. THE RELIABILITY AND ROBUSTNESS

The architecture mentioned above has

the capability of reliability and

robustness. However, some issues are

not covered in the architecture itself. The

most concerned to us is the network

connectivity in the severe environment,

lack of the power transmission of the

wireless network in the field. We have

the simulation test in the Mars Desert

Research Station in Utah. The network

has outage in the point that the

astronauts or the rover is out of the

wireless signal coverage. And it will

recover when they move back to the

place where the signal is strong enough.

The short-term network outage is a

problem that makes data distribution

unreliable. Either the connection loss

from the astronaut to JMS server or from

the ERA to the JMS server machine, the

data distribution will not be able to reach

the destination. We took a software

measure to overcome the problem; each

time when network connection lost, we

retry the connection until the connection

recovered. The retry is performed in the

way that the data is not waiting for the

retry to come back, instead, we set a

counter that will set to a period of time,

like 5 second, as a interval that retry will

be attempt. In this way, we do not tight

up CPU time, neither do the data

resource.

In the subscriber model, we also do the

retry to overcome the network outage

problem. The Logic is as follows:

In the processing of data loop

If (reconnectCounter==0)

 DoReconnect();

 Publish();

Else

 ReconnectCounter--;

Endif

When (ConnectionException)

 SetReconnectCounter;

 End loop

The other issue is that when use

SerialConnection class to acquire data

from the COM port, it can not be halt for

other tasks since the nature of the data

stream come in from COM port is real-

time continuers. So we have a separate

thread to do the data distribution and this

SerialConnection class is dedicated to

acquire and store the data in the memory

for further processes.

5. CONCLUSION

The field tests and experiments show

that the distributed components model

that utilized JMS architecture is very

suitable for the real time sensor data

distribution. It produced the reliable and

robust data stream to multiple clients in

real time. The publish subscriber model

is very scalable even for a large amount

of sensors data process. When we have

multiples sensor data to be published,

the multiple message beans can be

created and different topics also can be

easily created. The network failure can

be easily avoided by writing extra

software routine.

REFERENCES

[1] P. Eugster, P. Felber, R. Guerraoui,

and A.-M. Kermarrec,”The Many

Faces of Publish/Subscribe”, ACM

Computing Surveys, Volume 35,

Issue 2, pp 114-131, June 2003.

[2] L. Garces-Erice and E.W. Biersack

and P. Felber and K.W. Ross and G.

Urvoy-Keller. ”Hierarchical Peer-to-

Peer Systems”, Parallel Processing

Letters, Volume 13, Issue 4,

December 2003.

[3] Jameela Al-Jaroodi, Nader Mohamed,

Hong Jiang, and David Swanson,

“Middleware Infrastructure for

Parallel and Distributed

Programming Models in

Heterogeneous Systems”, IEEE

Transactions On Parallel and

Distributed Systems, Vol. 14, No. 11,

November 2003.

[4] Angelo Corsaro, and Douglas C.

Schmidt, “The Design and

Performance of Real-Time Java

Middleware”, IEEE Transactions On

Parallel and Distributed Systems,

pp1155-1167, Vol. 14, No. 11,

November 2003.

[5] Charles Zhang and Hans-Arno

Jacobsen, “Refactoring Middleware

with Aspects”, IEEE Transactions

On Parallel and Distributed Systems,

pp1058-1073, Vol. 14, No. 11,

November 2003.

[6] Victor Fay-Wolfe, Lisa C. DiPippo,

Gregory Cooper, Russell Johnston,

Peter Kortmann, and Bhavani

Thuraisingham, “Real_Time

CORBA”, IEEE Transactions On

Parallel and Distributed Systems,

Vol. 11, No. 10, October 2000.

[7] Wenbing Zhao, Louise E. Moser,

and P. Michael Melliar-Smith,

“Unification of Transactions and

Replication in Three-Tier

Architectures Based on CORBA”,

IEEE Transactions on Dependable

and Secure Computing, pp 14- 23,

Vol. 2, No. 1, January-March 2005.

